
This is a basic tutorial for installing Cygwin on Windows 10.

Step 1: Navigate to the Cygwin website and click on setup-x86_64.exe under Installing Cygwin:

Step 2: Save the file to a location you know how to access. I’m using the Downloads folder:

Step 3: Install Cygwin

https://www.cygwin.com/

We’ll be installing from the internet since that’s the easiest option.

For this tutorial we will be going with the default settings. The Root Directory (where Cygwin will be

installed) can be changed, just make sure to remember where it was changed to since we’ll need it later.

The Local Package Directory is just where files are stored when downloading the necessary files. If you

plan on installing again in the future, make note of this location later for easier reinstallation. Otherwise,

just click “Next”.

Leave it default here unless you know what you’re doing.

Pick a download site. This doesn’t particularly matter, just make sure you’re using an https site. I’m

going to stick with the default for this tutorial.

It’ll run for a moment and then this box will pop up.

Step 4: Selecting necessary packages

Cygwin has a lot of packages available, but we’re only going to need four:

• gcc g++ v. 11.2.0-1

• gdb v. 10.2-1

• cmake v. 3.20.0-1

• binutils v. 2.37-2

These should be all we need for most major IDEs, and it’s sufficient for compilation via command line.

Note: The version numbers might change as these are always being updated so just make sure the latest

version without (Test) is selected.

Click “Next”. The installer will ask you to review and confirm changes, so just click “Next” once more.

Depending on your internet connection it might take a bit, so just hang tight until it’s done.

It’s up to you if you want an icon on the desktop or in the start menu. I don’t use my desktop, so I opted

just to add the icon to the start menu. Click “Finish” and you’re done with the installation.

Step 5: Add the bin to the environment variables (the PATH)

Go into your search bar and type in ‘path’, then select the “Edit the system environment variables”

option.

A window like this should pop up. Select “Environment Variables”.

Select the “Path” category in the system variables and click “Edit”.

Navigate to where you installed Cygwin in File Explorer and copy the entire directory path from the bin

folder inside of the cygwin64 folder.

Click on “New”:

Paste the full path to the bin directory in the text box that appeared and click “OK”.

Step 6: Test

Type in g++ --version. If the version appears, you’ve successfully installed Cygwin! The same commands

can be used as in any compilation tutorial and programs compiled work on all platforms.

However, Cygwin has a choice: you can either continue using the Windows command prompt, or you

can use Cygwin’s built in linux-like terminal. Getting a feel for Linux will be important, since that’s the

primary development operating system, so practice might be a good idea. If you want to proceed using

the Cygwin terminal, keep reading for the optional Cygwin tutorial.

(Optional) Step 7: Using the Cygwin terminal

If you selected the “Add icon to Start Menu” or “Create icon on Desktop” when installing, opening the

terminal is the same as any other program. If you didn’t, you’ll have to navigate to the location where

you installed Cygwin and either launch “mintty.exe” in the bin folder or double-click “Cygwin.bat” in the

base install folder to launch it.

Once open, you’ll see this:

This works like a Linux terminal, so Linux commands like ‘ls’ or ‘vi’ (should you feel so inclined) work fine.

Windows commands still work. Once you have the terminal open, you can navigate to the appropriate

directory for compilation (It doesn’t start in the C: drive so you’ll want to use cd once to get there) and

compile the same way you normally would.

Here’s an example of navigating to another directory and compiling code, the same way you would in

most Linux distros.

