
Version Control
and

Code Repositories

Version Control and Code Repositories
● Version Control: a system that records changes to a file or set of files

over time so that you can recall specific versions later. Git is an example
of version control.

● Code Repository: a file archive and a web hosting facility (in this context)
where source code is kept, either publicly or privately. A code repository
includes version control. GitHub is an example of a Code Repository.

Do not confuse version control utilities such as Git with repositories such as
BitBucket and GitHub. Git is version control. GitHub and BitBucket are
repositories where you archive your code and work collaboratively.

This tutorial assumes you start with a local project you want to add to a remote repository. You can also
go the reverse, remote to local. You need to know both! In class we will usually do remote to local, but we

will start here with local to remote.

Version Control - Git
● Version control software allows you to have “versions” of a project, which

show the changes that were made to the code over time, and allows you
to backtrack if necessary and undo those changes.

● Git is one of the most popular version control systems.
● Git is distributed version control in a client-server model (there are other kinds).
● Developers run a local git instance which may also be connected to a

central git repository (usually this is the case, but doesn’t have to be).
● In this distributed client-server model, clients don’t check out the current

version of the files – you will mirror the entire version history.
● Each developer always has a complete copy of everything.

What’s the Purpose? How does it work?
Once your project is set up (after this tutorial) you will have…

● A system to track your changes and see where you were at the last step.
● A copy of all your work in a safe place where you can always see your

history.
● A place where you can work together with other developers.
● A way you can work in multiple locations (like school labs and home)

without having to carry files and move files around.
● Once you are set up, you will work like this...

create a file add file for
commit

test and
validatecommit file make

changes release

It’s funny because it’s true.

● Git and GitHub can be very complex when
used fully.

● However, for simple operations and most
work, you only need a few simple
commands and a little knowledge.

● If you want to eventually become a Git
Master… Good luck (you will need it).

Tutorial and Examples This tutorial assumes the following:

● You have a local project and you want to add Git and a remote repository.
● The examples show using the command prompt with some optional IDE

screenshots for reference (but you do NOT need an IDE- see below).
● All examples are in Linux because… Linux.
● Git is a command line tool, however most IDEs will have a full suite of Git

and repository tools built-in. You can work 100% at the command prompt
or 100% in an IDE or mix-and-match them as you like.

● You do NOT need an IDE for this tutorial and if you are a beginner, you
probably should NOT use an IDE. The IDE views shown here are only for
reference. If you are not using an IDE, just skip the slides that say “IDE
view.”

Getting Started
● If you are working on your own computer, you need to install git first.
● This tutorial assumes you have local files and want to set up a remote

Repo. In other words, you started a project on your own computer (local)
and you want to create a Repo on GitHub (remote) to track, store, and
manage your project.

● Start by making a directory (folder) on your computer somewhere you can
easily access from the command prompt.

● Go to that directory within a command prompt.
● Make code files in that directory. For this tutorial, you can just put any few

text files in there, it doesn’t matter what they are or what they contain.
● The rest of the tutorial assumes you are at the command prompt inside

the root of your project (i.e. the folder you just made).

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Initialize Git
● Inside the root of your project,

at the command prompt, type
git init

● This creates an EMPTY local
version control system.

● You will now see a .git folder.
This is your local version control
system.

● Notice in the listing to the left
the difference between before
and after git init.

● Do not touch .git/, it’s not for
you, it’s for Git.

IDE view
● If you look at your project in an IDE you will see the files are now color coded.

Each IDE will have different colors. At this point, probably red or green.
● This indicates they have not been added to version control.
● DO NOT ADD THEM at this point. You want to create a .gitignore first

because there are some files you do not want to add to the VCS.

git init

Create .gitignore

● .gitignore is just a text file. Make it with any text editor but it must be
named with a leading . and no extension.

● You must have a .gitignore to tell Git what NOT to track. You almost never
want to track project files, files with sensitive information (eg .htaccess
files), and other files that are not part of your application’s code.

● There two ways to do this - pick ONE method
○ Ignore everything, then add back what you want to track.
○ Just list what you want to ignore directly.

● This step is very important. Once something is in a repo, it’s forever.

Two .gitignore approaches that do the same thing

Note: you may or may not want to track
.gitignore itself. This is up to you.

IDE View

Notice the nbproject directory
is now ignored. This is an IDE
directory and we do not
usually commit those.

Add files with ‘git add’
● Now you can add files to your version

control.
● Files must be added before they can

be committed to be tracked in
version control. Example command:
git add file1.ext file2.ext

● Only add the files you know you want
to commit

● NEVER use complete wildcards like
git add . or git add *

● This example shows adding the files
and then listing them with git ls-files
to make sure we added what we
think we added. Also, git status is
shown.

IDE View

This view does not look any different because
in Netbeans (shown here) not-added files
versus added-but-not-committed files both
show in green. Most other IDEs will show red
for not-added and green for
added-but-not-committed.

Commit Files
● The commit is what locks in changes. You will do this each time you are done

with some logical portion of code.
● Commit in small batches corresponding to one logical change.
● Always include an intelligent commit message explaining the reason for the

commit. In this case our reason is “initial commit.”
● Example: git commit -m “initial commit”

Master versus Main
At this point you may have to do something unusual. First check your branch
with the command git branch. If you see * master as the response you need
to fix this by renaming “master” to “main”. To do this execute the command git
branch -M main. Then execute the command git branch again to check it
and you should get * main as the response.

This extra step is because the default name for the main branch has recently
been deprecated from “master” to “main.” You can read more about this
change. This will cause some confusion but you can always check your
branches by using the git branch command and fix it. Over time, all “master”
branches will be renamed to “main” and this step will go away.

https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/
https://www.zdnet.com/article/github-to-replace-master-with-main-starting-next-month/

Commit Files - small, often, and smart!
● Small: Commit with each small, self contained, logical change. For example:

○ one function
○ one bug fix
○ one logical self contained portion of code
○ one file or function or ADT stub

● Often: Since you commit small, you will commit often. Get used to it.
● Smart: Make descriptive commit messages that explain what has changed

and what you did since the last commit of that file(s).
○ Example: “Fixed one-off error in the loop in the displayArray() method. On 34, changed <= to <”
○ Do not ever make commit messages like this:

■ “done”
■ “bug fix”
■ “turning in”

Local Done!
● At this point your local version control is set up. You could stop here and

only work locally. Even if you don’t need a remote repo, you should
ALWAYS do at least this much.

● This will allow you to track changes, revert code if needed, and compare
versions (known as a diff).

● However this will not give you a backup (remote repo) or allow you to
collaborate with others. For that you need a remote repo like Github.

The next three slides will show you how to work with local only set-up,
then subsequent slide will discuss remote repositories.

https://github.com/

IDE view (as you code) ● Now you can work with an IDE
that will show you git tracking
your files (if you choose).

● This image shows what an IDE
will look like as you code with a
local VCS setup properly.

● Changes are tracked in color.
● Green for added code.
● Blue for changed code.
● Red arrow showing deleted

code.
● You can click the colors to see

previous versions of code.

Commiting Changes (as you code)

As you code, when you complete a section of code that you are sure is correct
and you want to commit the changes, do the following:

● For all the files you want to commit execute git add file1.ext file2.ext
Note that add is for “adding a file to staging to be committed.” Meaning that
you are adding files to be ready for a commit. For example if you have
changed 5 files, but only want to commit one, you only “add” that one.

● Now commit those file(s) with git commit -m “message” where the
message is what you want to note about your changes.

● At any time you want to check what files are tracked, modified, ready for
commiting, etc. you can use git status and/or git ls-files

IDE view

● The colors are gone now
because we committed the file.

● As you change more things, the
colors will come back to show
you your latest changes.

Add Remote Repository
● Go to https://github.com/ and

create an account (if you don’t
have one).

● Make a repository.
● DO NOT make a Readme or

.gitignore or a license file. The
repo MUST be empty for this
particular example and case.

● After this step you will have
an empty repository on
GitHub where you can sync
your local code.

Now you will see the screen below. STOP. If this is your first time using GitHub you will
need to set up a SSH key to interact with GitHub.

If you already use GitHub and know what you are doing and can already push/pull/clone to
GitHub with HTTPS or SSH skip 1 slide ahead. Otherwise, go to the next slide and keep
going.

Setting Up a SSH Key (you only need to do this once per account)

● In a different browser tab go to these instructions and follow them. Don’t lose
the previous screen with the instructions for connecting your repo. If you do,
you can get back to it by going to your repos and clicking the link for it.

● BUT READ THIS FIRST: Extra Information to go with those instructions:
○ Skip the first step “Create a repo.” It says you need a repo with a file in it, but you don’t. The repo

you just made will work for this example.
○ The commands you are told to execute are done in your command prompt.
○ Make sure to use your email in the example commands.
○ When asked for a file name for your SSH key, just accept the default by pressing enter.
○ When asked for a passphrase, skip it by pressing enter (twice).
○ When you execute the copy command, the key will automatically be in your clipboard and ready

for pasting into GitHub.
○ When you do the “test key” step it will warn you, ignore it. It will also ask you if you want to add

the key, say yes.
○ STOP at the step “Test the SSH key”. Do the test, but do not go any further.
○ If the test works you will get a “Hi <username>” message.

https://gist.github.com/xirixiz/b6b0c6f4917ce17a90e00f9b60566278

SECOND
Do these commands in
your project directory
using YOUR commands
from YOUR screen.

FIRST
Click the
SSH tab

Go back to your repo screen.

Connect your local and remote, then push.
In the previous slide you see GitHub gives you the commands to use to
connect your repo and push your code. Cut and paste them one at a time.
See below for each command used in practice (the first two lines)

Click on your repo name on GitHub to view it.

Add Files, Change Files, Commit, Push or Pull
● You can add/change files locally, and push them to your remote.
● You can add/change files remotely, and pull them to your local.
● For example, assume main.cpp is changed again by adding a comment.

This can now be committed and pushed from the command line or from
the IDE.

The next slide shows listing files that
are changed with git ls-files -m, the
status of git with git status, adding
with git add, and committing with
git commit

Add Files, Change Files, Commit, Push or Pull
WARNING!

Never change both remote and local files without syncing them with a pull or push.
If you do, you will not be able to pull or push until you resolve the conflict (which
may not be easy).

● If you change something local (i.e. on your computer), and you want to change
something remote (i.e. on GitHub), make sure you do a push first to sync
remote to local.

● If you change something remote (i.e. on GitHub), and you want to change
something local (i.e. on your computer), make sure you do a pull first to sync
local to remote.

View code pushed to remote repository.

There it is.

Complete Set-up Done!
● Your local version control is set-up.
● You remote repository and version control is set-up.
● You have connected them.
● Now you can work locally and when you have completed and tested a

section of code that you want to commit, you commit it locally, and push
it to the remote repo.

● You can also change your code in the remote repo and pull the changes.
● Others can now also clone your remote repo, work in their local copy, and

push their changes to the shared repo. You can then pull their changes
back to your local repo so you keep up with other developer’s changes.

Command Summary
The following are some useful commands to remember:

● git init initializes version control. You do this once per project (i.e. assignment)
● git branch will show you your branches and which one you are on
● git remote add origin <repo-link> adds a remote repo to your local git
● git add file1.ext file2.ext adds the files listed for staging to be committed
● git commit -m "some message" will commit the staged files with "some

message"
● git push -u origin main will push changes to the remote repo
● git pull origin main will pull changes to the local repo
● git ls-files will list files being tracked
● git status will tell you git's current status
● git remote -v will tell you the remotes you have connected

